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This paper contains a complete description of the resonance case 4 =B, i.e., when the unperturbed fre-
quencies in two perpendicular directions are equal. The form of the third integral is different from that of the
nonresonance case. The secular terms are eliminated, step by step, and higher-order terms are calculated
by means of a computer. The third integral is better conserved in actual orbits when more higher-order
terms are included in it. The invariant curves give the main characteristics of the orbits. The theoretical in-
variant curves represent sufficiently well the empirically found invariant curves (by means of orbital cal-
culations) when terms up to the fourth degree in the perturbation parameter e are included. A complete
classification of the orbits can be achieved even by using the zero-order terms of the third integral. For
accurate numerical results, however, we need to include terms up to the second or even to the fourth order,
especially in the case that e approaches the value for which the curve of zero velocity opens and the moving
point may go to infinity.

There are three main types of orbits: the A-, B-, and C-type orbits. Their boundaries are calculated
numerically and some characteristic points are found by means of the third integral numerically or by series
expansions. A detailed comparison between theory and numerical experiments gives always good agreement
when sufficient terms of the third integral are included. Five periodic orbits have been found, three stable
and two unstable. The transition types have also been discussed in detail.

These calculations are applied to the galactic orbits on the plane of symmetry of a distorted (nonaxisym-
metric) galaxy. If the distortion is of the order of 209, we find that the circular orbits become almost
rectilinear through the central region and then reverse the sense of rotation in a few billion years.

A second application refers to the energy exchange between two coupled oscillators. The third integral
predicts the correct amount of energy exchange. In one case the energy of one of the oscillators varies
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between 0 and % of the total energy.

1. CASE A=B. THE “THIRD’’ INTEGRAL

N this paper we apply the methods developed in

paper I (Contopoulos 1963) in the case 4 =B.

A change of notations is introduced, because we are
dealing now with two-dimensional fields, that have no
connection with the three-dimensional galactic po-
tential, for which the third integral was derived first
(Contopoulos 1960). Therefore, we introduce co-
ordinates #, y instead of £, z, velocities X, ¥, instead of
R, Z, constants 4, B, ¢, c1, ¢, ¢ instead of P, Q, b, x1,
%2, ¥3, and the functions H, &, ®», P19, Dao, etc., instead
of F,®, V, ®, Vo, etc.

The potential field is now

V=3(42’+By)—exy’, 1)
and 4= B. The zero-order term of the third integral is
@0= ¢1(2®10)*+ 2 (2P10) (2P20) +¢3(2P20)*+Co,  (2)

where ¢i, ¢o, ¢3 are constants to be defined later,

2810= X144, 3)
2By0=V?+A, 4@
Co= (2‘1’10) (2@20) cos2A43T 0y (5)

and T is given through the equations

(2®10)F (2®4)1
sinA¥(T—T,), »y=

x= sinA T,

O
X=(2®10)} cosd¥(T—T,), Y= (2Ps)% cosd?T;

hence
Co=X?V?— Ax?V2— A X?y*+ A2y +4A42XyY. (7)
We also have the energy integral
H=HyteH,=3(A2+ X+ Ay+ V) —exy*=h, (8)

where Ho=®0+®P20, Hi=—=x)?, and £k is the total
energy.

It is easy to show that if we multiply the term ®.
(Contopoulos 1960) by — (2B/3)(4B—A)(4—B) and
then set 4 — B, we get the limit Co. We therefore take
the integral

Po=poteprteort-- -, ©
and we calculate c¢i, ¢e, ¢3 so that ¢, shall not have
secular terms.

The higher-order terms are given through the
recurrent formula

Pr1=— f (nH)dT+[@10Dn,To),  (10)
where
(onH1)= 0 0/0X)y+@0,/0Y )20y, (11)

and f is an arbitrary function of ®y0, 20, To, which is a
polynomial in %, X, 9, ¥. Then we find

01=C1+401®11(2B10) +2¢5[ @11 (2820) + P21 (2810) ]
+4c3®01 (2®90), (12)
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where
24 6
C'1=——3—{2x3y2—zé(AxX2y2——xX2Y2+X33’Y)
) 2
22Y ; 6x2XyY+xy4_3xy2Y
A A
) (13)
——(xV*—XyV3)+—X Y},
- y y >
®p=— (1/34) (Axy*+2xV2—2Xy¥), (14
and
Py =H,—d11; (15)

Ci has been found from Cy in the same way as ®;; is
found from &;,.

If we calculate now ¢, we find the following secular
terms:

44+ B 24 A—B 2B
642 A% A% A2

where
A = T(Zq)lo)z (2‘1)20) sin24 !To,

- . (17)
B= T(z‘l)m) (2‘13‘20)2 sin24 }To.
The terms (16) must be zero, therefore
246c;—3cs=0 and 1+46c,—12¢c;=0. (18)
One solution of this system is
c10=— %, C20= 0', C30= +ﬁ (19)
All other solutions are
1= 610+61', Co= Czo+62', Cc3= 63o+03', (20)
where
o' =3c'= 63’, (21)

in agreement with the general theory developed in
paper L.
Therefore the integral (9) is written

o= potepit - - - =X2V2— Ax?V2— A X%y A%2y?
2 2
Qo Ghar 2
12
442892 2ABTV 22402 X yY — 2045 X272
146XV — 14Xy T+ 134 X PV — Ta VA TXy Ve
—94x?Y)+- - - = ¢,0= po,0tepiot- -+, (22)

where the zero after the semicolon means that ¢, ¢,
¢1° - - are calculated for x=1x9, X=X, y=90, V=Y.
If we calculate higher-order terms by means of a
computer (details will be given in another paper) we
find that ¢, has no secular terms and ¢, has the secular

+44xXyY —
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terms

6.875 36.5

98.28125
+ (2<I’20)2] sin24 iTo— T(Z@lo)z (2‘1320)2
2745
13.9375
X sindA3T,. (23)
9454

If we add in ¢, the terms
1 (2®10)%+ 2 (2010)2 (2P20) + 83 (2P10) (2820)2 44 (2820)2
+[d1(2®10)+ds(2®20) Jwo, (24)

where @o=Co—3%(2®10)*+ 75 (2820)%, we find also the
following secular terms in ¢q:

2d, 2d,
Tq [ (6(:'1— 2(52“—+—) (2‘1’10)2
3 3
dl d2
+ (452'- 463) (2‘1’10) (2‘1’20) + (263— 654+g— —6-) (2‘1’20)2 ‘\

X (2@10) (2‘1’20) sin24 %T0+ Tq (d1— dz) (2@10)2 (2‘1’20)2
XsindA43To.  (25)

where g(=—1/24%) is the coefficient of the secular
term 7'(2®10) (2®10) sin2A4*T,, appearing in the term
®;, of the expansion ®;.

The last term of (25) is essentially the secular termYof
d1(2¢1o)+d2(2¢20), which 1is T(2q) (dl—dg) (2‘1310) (2@20)
Xsin243T,, multiplied by Co= (2®10) (2®s0) cos24*T.

In order that the totality of secular terms should
vanish we must have

di dq
2743

36.5

— 289+ 263— ——=0, (26)
943

di d» 98.28125
e
12 12 2743
d; d» 13.9375

943

—C3+3Cs—

b

2 2

The solution of this system is
d1=—(27.875/94%) +d,,
é2=— (18.25/9A43)+¢;,
¢4=—(105.25/81.43)+1¢s,
&1=—(89.5/814%)+1¢;,

where Cs, dy are arbitrary. However, the terms with
s and d, are now

3¢3(2H0)*+d2(2H ) @0,

@n
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i.e., they are combinations of the integrals Ho and ¢y, that are used presently ; thus we may set é3=d>=0. Then the
terms of 6th, 7th, and 8th degree, as given by the computer, are:

o2 (total)

—0.151466049382716 E 04
—0.454398148148148 E 04
—0.415509259259259 E 04
—0.903549382716049 E 03
+0.325231481481481 E 03
-+0.259490740740740 E 04
—0.239699074074074 E 04
—0.598611111111111 E 04
+0.198611111111111 E 04
—0.725308641975308 E 02
—0.388888388888888 E 04
-+0.544444444444444 E 04
—0.159444444444444 E 05
+0.226967592592592 E 04
—0.362731481481481 E 04
—0.123032407407407 E 04
—0.400000000000000 E 04
—0.711111111111111 E 04
—0.217592592592592 E 03
—0.972222222222222 E 04
—+0.430555555555555 E 03
—0.354166666666666 E 04
—0.217592592592592 E 03
—0.725308641975308 E 02

[« W= W e W W= W W= W W W e W« Wi W« W« e W= W= 0= e e W W= -
QOB B PR WNNNNNNNRRER,OOO0OO000000COC
ON OO R PNNOOOWERFEFOPRPBNNNOOOO
OCONORONOBRNORWRFRONOPRPNOOAAPRNOD
O OO N R OONONBFRELWOONON®ONBO

0.126129982106037 E 06
0.212672932762558 E 06
0.261083109288592 E 05
—0.105194532781774 E 06
0.253314056765462 E 06
—0.294130862860600 E 06
—0.126129982106036 E 06
—0.279383327229380 E 05
0.343360889150380 E 06
0.177707316350357 E 06
0.105194532781773 E 06
—0.318335951123616 E 06
0.208866487430890 E 04
0.294130862860601 E 06
—0.280369098969127 E 06
0.329794327583611 E 06
0.649652856839897 E 06
0.217767713437275 E 06
—0.398017540066871 E 05
—0.201800163276670 E 06
0.253079813975820 E 06

AT ST ST ST ST ST ST ST ST AT ST ST ST ST S ST ST ST Sy Sy Ny %
WWWNNNERERRER B R ROODDDO O
CCOCOWHRMRBERNNNOOOOCUWWR i =
BNO R WRNOPRNOOAKBRNOFEWRULWR
OB R PR WONONPONPORREWERWOM

The first integer indicates the degree of the term,
the next four integers are the exponents of (4%x), X,
(A%y), ¥, and the last number is the coefficient of the
term; its last figure may be in error by one unit.

The terms of 8th degree are given before any correc-
tion to eliminate the secular terms of degree 10. The
additional terms are functions of ®yq, ®20, and ¢o; their
effect is of the same form as that of the terms discussed
above, but smaller because of the factor . For all

¥3

0.319585246001708 E 06
0.440766849176554 E 05
0.427571172026716 E 06
0.423198639953398 E 05
0.228874725712803 E 06

NN NN~
Tt W W
SO = NN
NO=NO
ON = ON

35

0.243407600308641 E 06
0.973630401234566 E 06
0.463300540123455 E 06
—0.812017746913580 E 06
—0.306206597222221 E 06
0.283143325617282 E 07
0.165508294753085 E 07
0.517759452160490 E 07
—0.414265046296280 E 06
0.162914737654321 E 07
—0.902874228395068 E 07
0.594103009259262 E 07
0.251963734567901 E 07
—0.266886574074075 E 07
0.136784336419752 E 08
—0.411041666666666 E 07
—0.111907021604938 E 08
0.245740740740740 E 08
0.468456790123452 E 07
0.103770061728395 E 08
—0.400778356481483 E 07
0.187473476080246 E 08
0.168794656635802 E 08
—0.690128279320986 E 07
—0.902874228395061 E 07
0.315393518518520 E 07
0.239459490740740 E 08
0.237040895061728 E 07
0.648314043209876 E 07
0.156234567901244 E 07
—0.186049382716050 E 08
0.215154320987651 E 07
—0.490495756172841 E 07
—0.399417438271600 E 07
—0.364708719135801 E 07
0.183252314814815 E 07
0.357781635802467 E 07
—0.749212962962965 E 07
0.185952932098766 E 07
—0.456307870370370 E 07

00 00 00 00 00 00 00 00 00 00 00 00 00 OO 00 CO 00 0 OO0 O 00 O 00 00 0O 00 OO 00 00 00 GO C0 00 00 0o 00 00 0o 0 OO
QO N R PR PR WOWWNNNNENNNNNNERRRRRBRBRRBROOODODODOOOOCOOOOO
CORNMNNOOOWR R EBERERNNNOOOOUMIWWER R EAARPRENDNNNNOOOOO
NOR NOBRNOFRWRNOPRNOOAOANOR OWOURUMIOLWUERBRNOBPRNOOAOAPRNO®OPRNO
O R ONONBRREMWONONPONPOARRERWEHRWNONONDNEBRONPBRPOAONBPO®

practical applications the terms written provide roughly
accurate results.

In order to check the accuracy of the third integral
a number of orbits were calculated numerically, by
means of the Runge-Kutta method in double precision.
The energy constant along the orbits was checked to
be constant, up to the limit of the eight printed signifi-
cant figures. In many points of each orbit the third
integral was calculated, truncated after the term ¢,
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TasBLE I. Accuracy of the third integral.
@0 P1 @2 @3 @4

M m D M m D M m D M m D M m D
a’ .206 144 .06 195 182 013 175 173,002 17352 17341 .00011 17347 17343 .00004
a’ 21 .01 .20 .20 12 .08 078  .026 .052 .065 .059  .006 .062 .060  .002
b’ .32 .07 .25 24 .16 .08 130 .076 .054 115 108 .007 111 109 002
o’ —.80 — .93 .13 -—.859 —.866 .007 —.854 —.858 .004 —.8553 —.8560  .0007 —.8555  —.8557  .0002
a 2 -5 7 20 —.20 .40 —.19 —.65 .46 —.21 —-.35 .14 - .26 -.33 .07
b 4 -2 .6 31 —.01 .32 —-.06 —.64 .58 —.01 —.20 .19 —.13 —-.18 .05
c 4 - 2 6 36 —.02 .38 —-.05 —.66 .61 - .02 .18 20 —.13 -7 04
d -4 -14 1.7 .52 32 .20 32 —.42 74 .70 22 48 .32 23 09
e 4 -2 .6 .34 .09 .25 —.02 —.66 .64 - .03 —.18 15 —.10 —.16 06
£ 4 - 2 .6 36 —.00 .36 —.05 —.66 .61 —.06 —.21 15 —.12 —.19 07
g -6 =—1.0 4 —.76 —.82 .06 —.78 —.83 .05 —.793  —.806  .013 —.796  —.806 010
h -7 -1.0 .3 -84 —.91 .07 —.83 —.86 .03 —.829  —.841 012 —.831  —.840 009

Units 1074,

€01, €0y, €03, and et g4 In Table I we give the maximum
M and minimum m value of the integral and the
difference D=M—m.

If we calculate the relative error of the third integral
2D/|M+m| we find:

(a) In the case a”, when the perturbation is small
(e=0.02), the relative error is about 0.07 if the third
integral is truncated after ep;, 0.01 after e¢;, 0.0006
after e€¢3, and 0.0002 after e*¢s.

(b) When the perturbation is intermediate, in cases
a’ and b/, (¢=0.05) the relative error is about 0.4-1.0
if the third integral is truncated after ep; or €2¢s, about
0.1 after e¥p;, and about 0.02-0.03 after e*ps. In case
¢’ (¢=0.05) the accuracy is almost 100 times better;
the relative error is only about 0.0002 after ees.

(c) When the perturbation is large (e=0.1) the
accuracy is small. The relative error, when terms up to
33 are included is of order 1, except in cases g, h, when
it is of order 0.01-0.02. After e*¢, the relative error
becomes 0.2-0.5; in cases g, h it is of order 0.01.

Therefore the truncated third integral is accurate
enough for small perturbations, but rather poorly
conserved when the perturbation is large. The case
e=0.1 is near the escape case (¢=0.118), when the
curve of zero velocity opens and the moving point may
go to infinity.

It is important, however, to note that even in this

II. INVARIANT CURVES

If we eliminate ¥ between Eqgs. (8) and (22) we find
the projection of the section of the third integral super-
surface by the energy integral supersurface on the xyX
space.

This is a surface on which lie the projections of the
orbits in the three-dimensional space xyX (called
hereafter simply orbits), whose initial points lie on it.

The section of this surface by the plane y=0 is a
curve which contains the points of intersection of the
orbits by the same plane. Such curves are called in-
variant curves (Contopoulos 1965); their form gives
many indications about the general properties of the
orbits.

The equation of an invariant curve going through
the point (x,X0), when the energy is

h=%(Axd+X+Y ), (28)
is found if we put y=0 and V?=21—A44’—X? in Eq.
(22), namely
15X4—2X?(10h— 34 4% — 9A4%x - 28h A «*

+ (8ex/34) 2h— X?— Ax?) 21 X294 x*—14h)+- - -
(29)

The invariant curves are always inside the “limiting
curve”

=the same function at the initial point.

case the third integral is better conserved when the X+ Aa*=2h, (30)
number of terms increases. When the terms e'os are  which is a circle in the A%, X plane.

included this integral begins to be approximately Equation (29) is written in zero order

constant. Therefore in order to apply theoretical results

to actual orbits the inclusion of terms up to elps is 0(44%X?%)=15X*—2X*(10/—3427)

necessary. This is done below in a few cases. In general, — A2 28h A2 — 15X - 2X 2 (10h— 34 x¢%)
however, only zero-order results are given. It is remark- - OAh— 28 Ad=0. (31)

able, therefore, that the orbits are very similar, topo-
logically, to the zero-order results found below.

It is also to be noted that the third integral is much
better conserved for orbits of type C (Sec. III), i.e.,
orbits that fill a ring around the origin, and orbits with
initial conditions near those of type C (orbits ¢/, h,
and g).

In order to have real solutions for X* we must have
J(Aa?)=1444%"— 480k A 2*4-100/24-225X ¢
— 30X 2(10h— 3420 — 13542x+420kA2* 2 0.  (32)

Further the solution must be between 0 and 24— Ax2
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But
6(Ax2,0)=—9A42x*+ 281 Ax?— 15X o*+2X * (10— 34 x¢)*

+9A4%x¢t— 28hAx?, (33)
and
0(Ax% 2h— Ax?)
= (104+15X@2—942) Y ?=0(0,2k). (34)
Hence if
107+ 15X 2— 9422 <0 (35)

we have one solution for X? acceptable, if (4 #xo,Xo) is
inside the “limiting curve” (case C). In Fig. 1 the
regions C are to the right and left of the two branches
of the hyperbola

10h=942—15X?, (36)

which intersects the axis A¥x at the points [Ad¥x
==4(10%/9)% X=0], and the limiting curve at the
points [A¥r=co(5k/3)}, X==(%/3)¥]. In case C we
have always g(4#?)>0, because the discriminant of
J(Ax?) is negative.

Further we must have

8(442,0) > 0. 37)
The equation §(A4%0)=0 has two real roots
147
Ag; =—9—:i:%{[14h—9(X02+Ax02)]2
+216X 2 (2h— X P— Ax)}t,  (38)

which coincide only if X¢*=0 and Axe?=14k/9. Thus
0(42%0)=9(Ax?— Ax?) (Ax2— Axs?). (39

The invariant curves are small closed curves around
the points Pj, Py A¥r==4(144/9)}, X=0] in Fig. 1.
The corresponding orbits surround the stable periodic
orbits corresponding to the points Ps, P, (see Sec. IV).

If

104+15X2—94x2>0 (40)

then g(A4x?) has two real roots Awxs?, Ax?(xs22> x.2).
The mean of the roots is 54/3, hence Ax.2<5k/3. In
order that g(4x?) should be positive, we must have
22<x.% or x*2>x’. The latter case does not occur
inside the “limiting curve” if inequality (40) is satisfied,
because then the maximum value of 4x? is 54/3. Thus
|#a| is the maximum value of |#].

The mean of the roots of Eq. (31) is (104—344%)/15,
which is between 0 and 2h—Ax® Further 6(4x?
2h— A%*)>0; therefore if 6(42%0)>0 there are two
acceptable roots and if §(42%0) <O there is one accept-
able root.

If Ax2<0, then for 0<Ax?*<Ax,? we have two
acceptable roots for X2 (case B).

If Ax?>0, then for 0<Ax*<Ax?® we have one
acceptable root and for Ax2<Ax?<Axq? two accept-
able roots for X? (case A).

THIRD INTEGRAL 821

F16. 1. Theoretical curves in the plane 4%, X for 4=0.1, 2%
=0.0153, ¢ — 0. The dashed line is the limiting curve 4x?4X2=24
(circle).

The transition case between cases A and B happens
if #2=0, or

0(0,0) = 15X04+ 2)(02 (10}1— 3A x02)
+94xt— 28hAx2=0. (41)

This equation represents a figure eight curve going
through the origin 0. Its sections by the axis X are
Xo=0 and Xo=d=(4%/3)3.

We have always Ax,2>Ax:? because for 4a*=Ax,?
Eq. (31) has a double root

X2= (10h—34x.2)/1550,

hence 8(4x420)>0; therefore, according to Eq. (39),
Azxg® is between the roots Ax?, Axs?.

If Ax.2=0, then we must have 44?>=0 and Eq. (31)
has a double root X2=24/3. We have also

6 (O,%h) = %[5 (2}1— 3X02-— A x02)2
+4420(26h—3X —8Axs) ]=0,

therefore Ax*=0 and X¢*=24.

Hence the invariant curves in case B surround the
points Py, Po[x0=0, Xo==4(3k)}] (Fig. 1), which
represent stable periodic orbits. The invariant curves
near the periodic ones represent ‘“‘tube” orbits (see
Sec. IV).

We see that the invariant curves permit immediately
the classification of the different forms of orbits.

The above discussion has been made for ¢ — 0. For
finite the invariant curves are somehow distorted. The
main types of orbits are, however, the same.

Figure 1 gives the invariant curves, when ¢— 0. If
€0 higher-order terms of the third integral must be
taken also in consideration. Figure 2 (a), (b), gives the
invariant curves when e=0.1 (=4), 24=0.0153, and
the third integral is truncated after the terms € g2 (@),
or e*ps(b). Their form is progressively changed as

(42)
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higher-order terms are included, but the general
succession of A, B, C type orbits is the same.

Figure 3 represents the actual invariant curves, i.e.,
the locus of the points (43x,X) when y=0 along a
number of orbits calculated numerically. It is seen

III. THE BOUNDARIES OF THE ORBITS

In order to find theoretically the boundary of an orbit
in the x y plane, we have to eliminate X and ¥ between
Egs. (8), (22) and

that the curves of Fig. 2(b) are very near the corre- J=%Y—%X=O (43)
sponding invariant curves of Fig. 3. Of course, the X oy ’
agreement is even better for smaller values of e. or
X2 A44? VH-Ay>\ 4dex
J=XY{2(Y2—X2)+2A (x2—y2)—-4< 3 )—( 3 )_BZ[_Zsz—ZOAy2_ 14(x2— Y2)+14Y2+9Ay2]}

2
—4dxy(X2— Yz)—gij[— 22422 (X2— V%) —14(3X2V2— X*) — 13492 (X2— V?)+ 7 (V4—3X°V?) 4+ - - =0. (44)

We first find the boundary in zero order, omitting
all terms with e in the equations.
The energy integral gives

X2=C,— 717, (45)
where
C1=2h— A (2+7). (46)
X

(b)

F16. 2. Theoretical invariant curves for e=4=0.1, 24=0.0153.
(a) The third integralis truncated after e?p.. (b) The third integral
is truncated after e*¢4. The initial points are marked by dots.

If we insert this value into the zero-order terms of
Eq. (22) we find
48Axy XYV =157*—2C,V*+-C;, 47
where
Co=20h—34 (4x*+4?), (48)
and

Cs=16/2+8hAy?*— 34292 (8224 3y*)+12¢0,0.  (49)
The zero-order terms of Eq. (44) are written, by
means of Eq. (45),
XV (—1572+Cy)=1242y(2V2—Cy).  (50)
We have to eliminate X and ¥ between Egs. (45),
(47), and (50).
By eliminating the product XV between Egs. (47)
and (50), we find

225V6—45C,V4+C,¥V?—Cs5=0, (51)
where
Cy=2C2+15C5+11524%, (52)
and
Cs= C2C3+ 576A2x2y2C1. (53)

Raising both members of Eq. (47) to the square and
using again Eq. (45) we find

225Y8—60C, YV 8+42C,V4—4CsV?+C?=0. (54)
We eliminate ¥? between Egs. (51) and (54) as

Fic. 3. Observed
invariant curves for
orbits calculated nu-
merically for e=4
=0.1, 24=0.0153.
The initial points are
marked by dots.
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follows: We subtract Eq. (54) from Eq. (51) multiplied
by Y2 and find

15C Y 6—C,V?*+3CsV2—C3*=0. (55)

Then we multiply Eq. (51) by C: and subtract it from
Eq. (55) multiplied by 15:
15(3C2—Cy) Y+ (45C5—CoCy) Y?

+CeC5—15C2=0. (56)

823
If we multiply now this equation by 15¥? and subtract
from it Eq. (51) multiplied by (3C22—C4) we find
15(45Cs+9C*—4C:Cy) V*
4 (15CCs—225C2—3C2CH-C2) V?
+Cs(3C2—Cy)=0. (57)

Now we can easily eliminate Y2 between the two second-
order equations (56) and (57), and find

[15(3C2*—C4)2Cs—15(45C5s+9CE—4CoCy) (CoCs—15CH) I
=[(15CoC5—225C2—3C*Cs+C) (CoC5—15C)— (3C52— C4)C5(45Cs— CoC) ]

X[15(45C5—C1C4) (45C5+-9CE—4C2Cy) —15(15CCs— 225C2— 3C3Cos+C2) (3CLE—Cy) .

This is the equation of the boundary in zero-order
approximation. It has been solved with the help of the
IBM 709 computer of the Yale University. Some of the
results found this way are represented in Figs. 4(a)—(e).

In all cases almost the same energy was used,
5~0.00765 and A=0.1. The angular points C1CoC3C4
are always on the curve of zero velocity, which is the
circle 4 (x*+9?)=2h.

It is to be noted that Eq. (58), because it involves
raising to the square of Eq. (47), gives also spurious
solutions that do not correspond to the real boundary.
This can be checked in the case of special points
(subsections A-E below). In Figs. 4 we include
only the real boundaries of the orbits in zero-order
approximation.

Figure 4(a) represents the boundary of an orbit of
type A (“hour glass” orbit). The boundary has four
angular points on the curve of zero velocity Cy, Cs, Cs,
C, and leaves four open spaces inside it. The boundaries
b1, be, b3, by are extended inwards and there are also two
branches di, dz perpendicular to the x axis. The inner
boundaries are defined as envelopes of sets of partial
arcs of the orbits. All these characteristics are present
in the actual orbits [ Figs. 5(a”,a’,a,b,f,g)].

Figure 4(b) represents another boundary of a type
A orbit.

Figure 4(c) represents the boundary of an orbit of
type B (“tube” orbit). The angular points on the curve
of zero velocity and the four open spaces are now quite
different [cf. Figs. 5(b’,c,d,e)].

The transition between type A and type B orbits is
shown in Fig. 4(d). Two symmetric orbits of type B
(namely C1C2'C3C4 and CyCe'C4C4’) combine into one.
The arcs C1C2, CsCy are tangent to the curve of zero
velocity at the points Cy/, C4'. The y axis is an unstable
periodic orbit. The arcs C,Cy’ and C;Cy are tangent
to each other at the point Co’ and the arcs CiCy/, CoCy’
at the point Cy.

The actual transition form, when 0, is shown in
Fig. 6.

Figure 4(e) represents the boundary of a type C

(58)

orbit (“shell” orbit), which does not have points in
common with the curve of zero velocity [cf. Figs.
5(c,h) 7.

The transition form between type A and type C
orbits is shown in Fig. 6.

Some special points of the boundary can be found
directly in zero and first-order approximation fromx
Egs. (8), (22), and (44). Because of the form of the
equations of motion every orbit crosses the x axis,
therefore we assume y,=0.

A. Section with the Curve of Zero Velocity

If C;=0 we have X=Y =0 and Eq. (47) gives C;=0.
Inserting the value By?*=2h— Bx? in C;=0 we find
C(Ax*)=154%*—20hBx2—442+12¢0,0=0. (59)

The solutions of this equation for Ax? are always real
because the discriminant is

20(322—36¢0;0)
=20[5(2X?— Y )2+542 (25— yo?)?
+524 (20Y o— X 90)*+104 (220X 0— 0¥ 0)2]2 0. (60)
This quantity is zero only if
2X?=Y¢, 2xld=9 xoVo=Xoyo and 2X@xe=yo¥ .
These conditions are satisfied if and only if
yo/20=Yo/Xo==V2.
Then the solution of Eq. (54) is
Ax?=2h/3, hence Ay*=4h/3, ie., y/x=V2.

The solutions y/x=Y/X=+V2 represent periodic
orbits.
In fact if we set xo=9=0, Y¢=2X¢? we find

po=2(X2+Aa2)?, e0,0= (2/9) (2R)?,
p1=— (162%/3) (X2+A44?), ¢1,0=0,

(61)
(62)
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10000
Q2= {l:— 5 +61+252+463+864+2(d1+2d2):|

32x8
% (X2+Ax2)3+—9—} :
(63)

10000
¢2;0=[_ 9 +C1+2Co1-4¢5

+se4+z<dl+zd2>]<2h>a,
and Eq. (8) gives
X4 Ax2=1(2h+4exd). (64)

Therefore if we include all terms up to € we find
eotep1t €0r— o 0—€epr0— €020=0.  (65)
Similarly if we write
J=JoteJiteéJpt- -,
we find along the above orbit Jo=J,=0, and
Jo==V2[6(C1+Co—4C4)+4(d1—do) 1 X2 (X2+ Aa2)2=0.

The relation é;+¢.—4¢s+%(di—ds)=0 was used in
order to check the accuracy of the higher-order terms
given by the computer.

Thus the straight lines y==£V2x are periodic orbits
in second-order approximation, and presumably to all
approximations. The empirically found periodic solu-
tions were, in fact, straight lines forming an angle
tan—V2 = 54°44’ with the x axis (Fig. 6).

In order that the boundary should have points in
common with the curve of zero velocity we must have
one root Ax?, at least, positive and smaller than 24.

We have

C(0)=—4/+12¢0,0=6(0,0) (66)
and
C(2h)=16k4-12¢0,0=6(0,2k) > C(0). (67)

The mean of the two roots is 2%, i.e., it is between O
and 2h.

If C(0)>0, then also C(2k)>0, i.e., both roots are
acceptable (case B). If C(2k)<0, then also C(0)<0,
i.e., no root is acceptable (case C). If C(2k)>0, C(0) <0
only one root is acceptable (case A). If xo=17,=0, then

@0;0— X 02 Yo2— %X 04‘|"11_2Y04, (68)

dew\ Aub (Qh—ARY(  dew 4
Ax2(2h—-Ax2)(1+ )— 4 14—+

A 3 12 \ 4 a4

2 X04
) X Oh— Xt~

and Eq. (59) is written
154%24—10(X @+ YV D) A2+ 10X 2V 2 —5X*=0. (69)
Its solutions are
Ax?=X¢ and Ax?=32Y¢—X?)=%4h—3Xe). (70)
The corresponding values of Ay? are
Ay?=Y¢? and Ay?=3{AX?+ VP =3@8r—3V). (71)

Hence we have one acceptable solution if X¢*>4%4/3
(case A) and two acceptable solutions if X@<4h/3
(case B).

If e is not very small a higher-order approximation is
required. For example, in the calculated orbits it was
found that for xo=v,=0 and X, very small we have
orbits of type A and not of type B, as the zero-order
theory would require.

If we solve numerically the equation ¢= ¢,q for
X=V=0, Ay*= (2h—Ax?)/(1—2ex/A4), xo=10=0, V¢?
=2h—X ¢ and different values of X, we find (if the
integral is truncated after e*p,) that the transition
between type A and type B orbits for e=0.1 occurs near
X=0.026. Empirically the transition is found between
X=0.026 and X,=0.027. The transition orbit is an
unstable periodic orbit, intersecting the 4¥x axis near
A%=0.037. The corresponding invariant curve is a
figure eight near the invariant curve going through
A¥xe=0.04 in Fig. 3.

The unstable periodic orbit is represented in Fig. 6,
together with the boundary of an orbit of type A, whose
initial conditions differ very little from those of the
periodic orbit.

An inspection of Figs. 2(b) and 3 gives a transition
invariant curve for A¥xy=0, X=>0.028, which is
essentially the same value as above.

We now try to find the transition point X, analyti-
cally, i.e., as a series in e. We assume that X,is of order
¢; then one point of intersection of the boundary by the

curve of zero velocity has x of order e. We set
Xo=poe, x=ce

and X=Y=0, x¢=y,=0, and retain all the necessary
terms up to the order e Then V¢¥=2h—X?,

2ex 4ex?
A= Qi a1+ =),
4 4

and ¢ is written

(2h—X )
12

2¢ 2ex\*? 2ex\3
—9—A{4x(2h—Ax2)2(1+;> +8hAx3}+e2{Roe(2h—-Ax2)3(1+-Z—> —Sow(2h—X )3

+R24A x? (2]1)2‘—' S24.X02(2h)2 } + 63R16 (A *x) (2h)3+ e (Rog— Sos) (2h)4 = 0, (72)
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(©) (d)

F16. 4. Theoretical zero-order boundaries of the orbits with
initial conditions (a) xo=w,=0, X=0.105, ¥,=0.06538. (b)
xo=90=0, X¢=0.12369, ¥(=0.0089. (c) xo=yo=0, X(=0.027,
Y0=0.12071. (d) xo=yo=Xo=0, Y,=0.12371. (es 20=0.367,
yo=X0=0, ¥3=0.0428,

~
Seeo

(e)
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y0=07

e ——

0.05). (b’) xo

7

0, ¥=0.12370 (e

yo=2Xo

X0=0, ¥,=0.12370 (=0.02). (a’) o

((Z:'V)0 X0

- | \\\\\\

2 <
!
!
/
/
/
/
/
/
2
~\\-,,“\\
-
0
-

=0.1),
—0.10198

0.12370 (e
0.070, Y,

0, Vs

=Y,
Y0=0, Xo

=19

0.1). (d) xo

0.05) (a) xo

=0.12071 (e

0, V=0.04280 (e
=0.027, Yo

y0=0: Xo

0.367, yo=Xo

0.1) . (C) Xo

0.12093 (e

Fi16. 5. Orbits for 4=0.1 and (a’’) %o
X,=0.018, ¥,=0.1223765 (e=0.05).
(b) #o=0=0, X0=0.026, Vo=
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Y
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N
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(
2%

(e=0.1). (e) Ho=90=0, X¢=0.102, ¥¢=0.06997 (¢=0.1). () xo=90=0, Xy =0.103, ¥,=0.068491 (¢=0.1). (g) *o=1y9=0, X=0.12369,
Y9=0.00089 (¢=0.1). (h) £9=0.390, yo=X,=0, ¥¢=0.009441 (¢=0.1). The dashed-dotted lines represent the boundaries of the orbits.
The dashed lines represent the curves of zero velocity.
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where Roe, Soe, R24, Sz4, Rle, Ros, Sos are the coefficients of (A §y)6’ Ye, (A %x)z (A %y)‘l, (A %x) (A %y)ﬁ, (A %y>8_. V3in

©2, @3, @1, as given above. Then we find

4he  pe? l 242 (Rog— Sos)
1

12

22—

34 A 54 an 34

154° 4hd 5

3A4c* 8¢ 92hc? 3[)04 364 4hCR06 p02S 06
A n e
A? A

12h p02524 24]12CR16 48}
+—<62R24'— )"ir f (ROS— SOS):I =0. (73)
5 A 54

This equation in zero-order approximation has real
roots if
4p?

Pt [—54-544%(Ros—Sos) J=p:2. (74)

4543

For 24=0.0153, A=0.1, we have Rog—Sos=11/184?
=611.111 and we find a double root ¢=24/342=0.51
for p2=11242/4543=0.1457 (p,~~0.38). If we set now
¢=2h/34%+ ew and

po’*=pi*+€R,, (75)

we find that w is real if

873 1297 151243S0s 1843R

Ro> [———+54A3Rob+ :
2748 150 25 5
504A43Ses 5444R,;¢ 162456

— (Ros—Sos):I=R1, 16)

hence we have real roots (case B) only if
2 pi2+ €Ry=po?. W

If ¢, d» are not zero, and we include the terms

\\\\\\\\‘\\‘§ \ N
W

T~

-

F16. 6. Periodic orbits and limiting orbits for 4=0.1, 24
=0.0153 and €=0.1. The orbits P1P;, PoP; and P3P, are stable
periodic orbits, and the x axis and Co'C4’ unstable periodic orbits.
The limiting orbit between A- and B-type orbits is C1C2C3C4 and
the limiting orbit between A- and C-type orbits is shaded.

54%

3¢:(2H )3 +d2(2H,) 0o in o, we find
Rog= —903.54938-+ 13+ %5ds,
Soe= —1514.66049+ 13+ ds,
Ray=—1230.32407+ 3+ 75 (13ds),
Sa4=325.23148+ 3+ 15 (13d2),

and if we calculate also the terms of degree 7 and 8

R16=177707.31635— (2¢3/ A'%) — (19d,/1841%),
Rog—Sos=—549614.19753+ (11d,/1843).

Hence Ry~—13.2.

This is independent of & and d» as it should be
expected. Then for ¢=0.05 we find €;=0.019, and
ep2=0.017, for €=0.1, ¢01=0.038, and ep»=0.012.

In the calculated orbits we have a transition from
case A to case B between X,=0.0170 and X,=0.0172
for €=0.05 and between X(,=0.026 and X,=0.027 for
€=0.1. Therefore the formula (77) is satisfactory in the
case e=0.05, but not in the case e=0.1. On the other
hand, we have seen that the equation po= ¢,, truncated
after etpy, gives satisfactorily the point of transition.
Therefore the solution of the third integral equation is
much better effected numerically in the case ¢=0.1
than by means of a truncated series. This result could
not be predicted a priori. In general finding the accuracy
of the results of a certain truncated series for different
values of € is a matter of experience. In this case it is
quite insufficient to truncate the third integral after
€p1, even for €=0.05, and we must include terms up to
€'p; when €=0.1 (and then find the accurate numerical
solution, and not a series expansion).

B. Section with the x Axis (if XYV 0)
If y=90=0, Eq. (47) gives
15V4—2C,V2+C,=0, (78)

and Eq. (50) gives XV (—15V2+C2)=0. If we assume
XV #0, then

V2=Cy/15, (79)
and Eq. (78) becomes

C—15C;=0, (80)
or

D(Aa?) =144 A% — 480k A2+ 160k — 180 ¢0,0=0. (81)
The roots are imaginary if 1642+ 12¢,,0<0 (case C).

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1965AJ.....70..817C

FT965AT.- T CZ70. Z817TO

RESONANCE CASES IN THIRD INTEGRAL

In cases A, B the roots are real and their mean is 5%/3.
Further

D(0)=25(V2—2X )
4204225422+ 10X 213V ) 20.  (82)

Therefore there is only one root acceptable. This is
zero if 2o=0 and Vo= =4V2X,, i.e., for the straight line
periodic orbits found above.

Thus the boundaries of the A- and B-type orbits
have two angular points on the x axis, symmetric with
respect to the origin in zero-order approximation. This
is clearly seen in the calculated orbits. Only for orbits
near the C type (i.e., with large initial xo and/or Xo)
the angular point to the right does not appear (cf.
Sec. 1V).

C. Branch Perpendicular to the x Axis (X=0)
If X=0 Eq. (50) has three solutions:

(i) x=0; then we have a periodic motion along the
9 axis.

(ii) Y2=1C,. Then, because of Eq. (45) we have
C1=0, i.e., points on the curve of zero velocity.

(iii) y=0. Then Egs. (45) and (47) give

15C2—2CoC1+C5=0, (83)
or

E(A442) = 9424 — 287 A2+ 42— 1200,0=0.  (84)

The roots of this equation are real because the dis-
criminant is
640424432 po,0=4[ (2X *—TAy?)?+ (242 — TV ?)?
+188(X Y o+ Axeyo)2+24 (220X o+ Ty0Y 0)2] > 0.
(

85)
The roots must be between 0 and 2%. We have

E(0)=4/2—12 p4,0=—0(0,0), (86)
E(2h)= —16/2—1240= —0(0,2}), (87)

and the mean of the roots is 144/9. Hence in case A one
root is acceptable, in case B no root is acceptable, and
in case C two roots are acceptable.

In the last case the two roots coincide if

Vo=2£20(24/7)} and Xo=zy,(74/2)} (88)

The locus of these points on the xg, ¥, plane is the
ellipse

A x02 Ayo2 2h

72 9 59
and represents a (stable) periodic orbit.
If yo=X=0, then Eq. (84) is written
042 (xh—xgt) — 284 (a2 — w¢?) =0,
i.e., the roots are
Ax?=Ax® and Ax?=—Ax?4+28k/9. (90)

829

In case C the last quantity is between 10%/9 and 24,
because 104/9<Ax®<2h. In case A only the first
root is acceptable. Case B is impossible if yo=X,=0.

The transition between A- and C-type orbits occurs
when Ax¢® — 10%/9, or Ax® — 2k. Then the solutions
of Eq. (84) are Ax*~10%/9 and Ax*~2k. The inner
boundary is reduced to a straight line segment between
x=—(10%/94)% and x= (104/94)} while the outer
boundary is tangent to the curve of zero velocity at
x=o=(2h/A)}

In order to find the transition in higher approxi-
mation we set y=9o=X=X,=0 and Ax?=2k, ¥V?=0
in equation ¢o— ¢;0=0, truncated after € p,.

The terms different from zero are

A?xt A%t Vot 2e
+ ABRY P —————

3 3 12 4
+ e[ —72.530864 (A3x5— A3%,%)4-1514.660494 Y

—2269.675926 Ax¢?Y ¢ —430.555556. 4% Y #]=0.
(1)

(ZA xo3 Y02_ 7x0Y04)

Then we may write
xo==£(10k/94) 4 w1+ wo,
and to a second-order approximation
10/ 107\ } 107\
Ax=—-24 e(—) w14 62[w12+2(_) w{l, (93)
9 94 94

and V?=2k— Ax

After some operations we find

wi=164/2742,

(92)

(94)
and

wa=TF (4142/24344) (94/10/)*. (95)

For £=0.00765 and 4=0.1 we have in zero-order
x0==£0.29155, and w;=0.4533, w,=F0.3387.

The transition between A- and C-type orbits in
first-order approximation is at x=-0.314 or —0.269
for €=0.05 and at x=-40.337 or —0.246 for e=0.1.
In second-order approximation it is at x=-+40.313 or
—0.268 for €=0.05 and at x=-40.3335 or x=—0.268
for e=0.1. The actual transition has been found at
¥~0.313 for ¢=0.05 and at ¥~0.333 for e=0.1. The
agreement is very good. The transition orbit is the
unstable orbit y=Y=0. The limit of an orbit whose
initial conditions are very near y=Y¥=0 is given in
Fig. 6.

We proceed now to the calculation of the periodic
orbit of type C in second-order approximation. If we
set y=X=1y,=X,=0,

x=xo=:l:(14]’t/9A)%+elﬁ1+ 621[/2 (96)
and
Vi=YV¢=2h—Ax2 97)
we require that the solution ==, be double, i.e.,
12(d¢/dx)o=0. (98)
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We have 12(po— ¢o,0) = E(A%?) ; hence
12(d o/ dx) o= 36A2x¢*— 568 A %0. (99)

In Eq. (22) only the terms 244*Y? and —7x¥*in ¢1
are different from zero, hence
12(des/dx)o

= —(8/34) (—454%x*+ 96hAxs*— 28K2).
We have further

2= —1514.660494Y54-2269.675926 422 V*
+430.5555564 2272 —72.530864.4 %8,

(100)

hence

do
12(;—2) =236250A43%¢°— 830666.6667 hA2%x®
X /o

+654111.1111724%,. (101)

If we insert the value (96) we find after some
operations
Y1=8h/2742, (102)
and

Yo="F (647/5674%) (14h/94)*. (103)

If 2k=0.0153, A=0.1, we have (144/94)%=0.34496,
and y1=0.2267, y»="F0.298. Hence for e=0.02 we have
20=0.349 and —0.340, for €=0.05, x,=0.356 and
—0.333 and for e=0.1, xo=0.365 and —0.319.

The actual periodic orbit for e=0.05 is at x,=0.356
(yo=X,=0, Y,=0.0512484). The second point of
intersection with the x axis is at x=-—0.334. For
e=0.1 the periodic orbit is at %,=0.364 (x¢=X,=0,
Y,=0.0452813, Fig. 6). The second point of inter-
section is at x=—0.320. The agreement is very good.

Equation (84) has also another double solution, for
x=1x0=0. If we set x=x0=ef1+ X+ ¥ y=V =1y,
=Y,=0, in 12(d¢/dx)s=0, retaining only terms up to
the third degree in ¢, we find

— 56RA (f1t ot é5)+ 364268
— (8¢/34) (—28/2+96hA e2)+654111.1111724 €4,
— (10338.4/2749/28=0, (104)

the last term resulting from 12€*(dgs/dx)o.
Hence

Fi=4h/342, =0, Ps=3212/1545.

The first-order periodic orbit xo=ef1 is the same as
in the general irrational case (Contopoulos 1965).

For 24=0.0153, A=0.1 we have: ¢;=1.02, y3=12.5.

For ¢=0.02 we have a periodic orbit at x=0.0205.
For ¢=0.05 the periodic orbit is at xo=0.0526, and for
e=0.1 it is at x,=0.1145. In the last case the term
€43 is more than 109 of the term efs.

The actual periodic orbits occur for wxo=0.0526
(e=0.05) and x,=0.116 (¢=0.1, Fig. 6), i.e., very near
the theoretically calculated places, and they are
unstable.

(105)

D. Section with the y Axis (if X¥V'5£0)

If x=0 Eqgs. (47) and (50) give Eq. (80), which is
now written

F(Ay?) = 144424 — 24014 5>+ 160/2— 180 04,0=0. (106)

We have real solutions only if —44%+12¢¢020
(case B).

Further, we must have 0<A4%°<2k and 0K Y2
£2h—Ay?, where YV?=Cs/15=(20h—345?)/15. These
conditions are reduced to

0< 442K 5h/6.
But
F(0)=5(321*—36¢0,0) 20, (107)
because of Eq. (60) and
F(5k/6)=15(4h2—1200.0) < 0. (108)

Hence one root is always acceptable, i.e., in case B
the boundary always intersects the y axis at an angle.

The limiting case —44#2412¢0;0=0 happens for
Ay?=35h/6 and V2=Th/6=2h— A% hence X?=0; this
case has been considered already.

E. Branch Perpendicular to the y Axis (¥'=0)
If Y=0 Eq. (50) has the following three solutions:

(i) y=0; then we have a periodic motion along the
x axis.

(ii) C1=0, i.e., points on the curve of zero velocity.
(i) 2=0. Then Eq. (47) gives

G(A9?)=9A4%A— 8hAy2—16/2—1205,0=0. (109)

The discriminant of this equation is the same as that
of Eq. (84). Therefore it is always positive, except for
Vo=ox0(24/7)}, Xo="F90(74/2)%, (periodic orbit)
when it is zero.

We have also

G(0)=—0(0,2h),

(110)
(111)

and the mean of the roots 4y?is 47/9.

Therefore in case B no root is acceptable. In case A
one root is acceptable, and in case C both roots are
acceptable.

In case C the periodic orbit intersects the y axis at
the points y== (44/94)%. Thus the two roots of the
general C case are on both sides of the double root of
the periodic case. In fact it can be seen that the C-type
orbits surround the periodic orbit.

If one root tends to zero, the other root tends to
Ay?*=8k/9. This case is the transition case between
A- and C-type orbits (Fig. 6). Therefore all orbits
whose initial point is outside the boundary of the
transition orbit are A- or B-type orbits.
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IV. CALCULATED ORBITS

A large number of orbits have been calculated in the
potential field (1) with 4=0.1, 2A~0.0153 (approxi-
mately), e=0.1, 0.05, and e=0.02, and different initial
conditions. These values are of the same order as those
used in paper I. Most calculations were made at the
Goddard Institute for Space Studies, in double pre-
cision, by means of the Runge-Kutta method. The
step used was 0.05 time units and the calculations were
made usually for 400-600 time units. This interval was
sufficient to give the general form of the orbits when
e=0.1. When ¢=0.05 the calculations were extended,
eventually, to 1200 time units. In case a’’ it has been
found necessary, in order to find the general form of the
orbit, to go up to 5500 time units.

In all these cases the energy integral was conserved to
eight significant figures (with an error 1 in the last
figure in case a'’, because the program was stopped
many times and only eight significant figures were
available for the continuation of the orbit). A check of
the individual coordinates and velocities was made by
repeating the calculations with a different step (0.02)
in a few cases. The printed values were found accurate
to seven significant figures, at least.

Some of the most characteristic orbits are represented
in Fig. 5 (a”,a’,b’,c’a,b,c,d e f,g,h,).

All the orbits are contained inside the corresponding
curves of zero velocity

A (52492 — 2exy?=2h, (112)

which are drawn as dashed lines in Figs. 5.

This curve intersects the x and y axes at the points
=+ (2h/A)2=+0.391. If ¢=0 the curve is a circle. The
magnitude of the perturbation when 0 can be given
by the maximum value of the ratio

exy?/h=ex(2h— Ax?) /(A —2ex), (113)

which occurs when

4ex’—34x*42h=0. (114)

By solving this equation we find that (exy?/A)max
is 629, 209%, and 79, for e=0.1, 0.05, and 0.02,
respectively.

The maximum value of ¥ on the curve on zero
velocity occurs for x given by the equation

Ax?— (42%/€)+2h=0. (115)

The solution of this equation which is smaller than
(2h/A)% is x=0.189, 0.080, and 0.031 for ¢=0.1, 0.05,
and 0.02, respectively. The corresponding values of
Ymax are 0.435, 0.399, and 0.392.

The boundaries of the orbits are given in Fig. 5 as
dashed-dotted lines. In some cases these lines are
extended inwards, representing the tangents of sets of
arcs of the orbits, which correspond to the branches
b1, bs, b, bs, d1, d2 oOf the theoretical boundaries [Fig.

831

4(a)]. The points where the arcs by, bs, b3, bs meet dy, dp
are not well defined.

It is noted that all boundaries, except those of type
C, have four angular points on the curve of zero
velocity.

The areas covered by the orbits are shaded. The
initial arcs of the orbits (usually up to 50 time units)
are also drawn in Figs. 5, as well as a few characteristic
arcs.

Figures 5a, a’, 2’ represent three orbits with the same
initial velocity at the origin, going upwards (xo=7yo
=¥,=0, X(=0.1237) for three values of e(e=0.1, 0.05,
0.02). All three orbits are of type A; their boundaries
remind of an hour glass. The moving point makes
elongated loops clockwise with the long axes of the
loops turning also clockwise. When the loop approaches
the direction CiC; the moving point begins to make
loops counterclockwise and the axes of the loops turn
also counterclockwise, until the loop approaches the
direction CoCjy, etc.

The loops are more elongated when e is smaller,
and the time needed to cover sparsely the area inside
the boundary is much larger in this case. The first
reversal of the sense of rotation occurs after about 90
time units when ¢=0.01, after 490 time units when
e=0.05, and after 3600 time units when e=0.02. These
results indicate that the time needed to fill the whole
space may be proportional to 1/€5.

All orbits a, b, ¢, d, ¢, £, g, a/, b/, a’ have the same
starting point and the same measure of initial velocity.
Only the angles of this velocity with the x axis decrease
progressively for the same value of ¢, i.e., the projections
X of the initial velocities increase. The boundary of the
A-type orbits is symmetric with respect to the x axis.
It leaves four empty areas inside the curve of zero
velocity, between every two of the angular points
Cy, Cq, C3, C4. The empty areas between C; and Cs and
between C3 and Cy are small, except when the initial
velocity makes a small angle with the x axis (case g);
in the last case the empty spaces to the right and left
are very small.

The inner “boundaries” form, in general, two triangles
inside the area covered by the orbit. The triangle to the
left is always larger than that to the right. As X,
increases from 0O the two perpendicular inner branches
approach each other. They coincide in the case of the
unstable periodic orbit, which is perpendicular to the
x axis (Fig. 6).

For larger values of X, we have B-type orbits. These
orbits are asymmetric with respect to the axes. They
surround the periodic orbit y=xV2; for this reason they
are called “tube” orbits (Ollongren 1965). They also
leave four empty areas inside the curve of zero velocity.
If the initial velocity at the origin forms with the x axis
an angle greater than tan~'v2 then the moving point
forms initially clockwise loops, whose axes are turning
clockwise until they approach the line CyCs. Then the
moving point begins to describe counterclockwise loops
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which turn also counterclockwise until they approach
the line C2Cy, etc. The behavior is similar to that of the
orbits A, only the point Cs is to the right of the point
C4, while in the case A it is to the left (and C,, Cy are,
then, symmetric with respect to Cs, Cy). Figures 5(b),
(c) represent orbits with X¢=0.026 and X,=0.027.
The two orbits are near each other for more than 100
time units but their general form is quite different.

If an orbit comes very near the unstable periodic
orbit that separates the A- and B-type orbits, the
moving point makes many narrow loops near the un-
stable periodic orbit, and then proceeds further across it
(case A) or returns back (case B). Figure 4(b’) is a tube
orbit (X¢=0.018, ¢e=0.05), near the unstable periodic
orbit. For X=0.017, ¢=0.05 we have an A-type orbit.

Figure 5(d) represents a tube orbit very near the
periodic orbit. When the angle of the initial velocity
with the x axis is larger than tan—'vZ the orbits are
similar to those described above, only the loops are
initially described counterclockwise. The boundary of
orbit e [Fig. 5(e), X,=0.102] is very similar to that
of orbit ¢ and the boundary of orbit f [Fig. 5(f),
X4=0.1037] very similar to that of orbit b. The transition
is the same unstable periodic orbit.

The orbit represented in Fig. 5(f) has initial velocity
components Xo=—0.103, Y,=—0.068491; it is the
same with the orbit with X,=0.103, ¥,=0.068491. 1t
has also been checked that if two initial velocities
are symmetric with respect to the axes, the boundaries
of the orbits are the same, as expected.

For large X, [Fig. 5(g), X0=0.12369] the orbit does
not approach the periodic y=Y=0. This proves that
the periodic orbit y=Y =0 is unstable.

In cases with large X, the inner triangle to the right
is reduced to a point and then disappears. The vertical
line, however, remains, and the boundary to the right
does not have an angular point on the x axis.

These characteristics are explained by the distorted
form of the invariant curves [Figs. 2(b) and 37]. For
orbits of type B we never have X=0, i.e., the orbit
never crosses perpendicularly the x axis. The orbits
of type A always have two points for which X=0. The
minimum value of x on the invariant curve (correspond-
ing to two values =X) is always to the left of the
left point where X=0; therefore the left boundary
on the xy plane has an angular point on the x axis
[x=%min(y=0), X=4-X1], which is to the left of the
left point x(y=0, X=0). The invariant curves near
the unstable invariant point show also a similar be-
havior to the right; the maximum « for y=0 is to the
right of the right point x(y=0, X=0), and a small
triangle is formed by the boundary. However, for the
outer invariant curves the maximum value of x occurs
for X=0, therefore the outer boundary for y=0 is
perpendicular to the x axis.

If yo=Xo=0, and %0, but x, is smaller than a
limiting value, we have an invariant curve intersecting
the X axis, therefore the orbit is of type A, as described
above.

If, however, x, is large enough, we have a C-type
orbit [Figs. 5(h) (e=0.1) and 5(b") (e=0.05)]. The
C-type orbits surround a stable periodic orbit, that has
the form of a distorted ellipse (Fig. 6). The C-type
orbits are sometimes called ‘‘shell” orbits. Their
boundary does not have any point in common with
the curve of zero velocity. It is composed of two closed
curves around the origin. For e=0.1 we see that the
inner boundary forms sometimes (perhaps always) two
triangles inside the ring filled by the orbit, symmetric
with respect to the x axis, to the left of the y axis; thus
the inner boundary has two angular points.

If %9>0, Y>0, the invariant curve for ¥>0 is a
small closed curve to the right of the origin and for
¥ <0 a small closed curve to the left of the origin.

TasirE 1I. Characteristics of the orbits.

Xmin Xmax x( y=0
Cs (y=0) (y=0) X =0

ET) Yo Xo Yo C1 C2 Cs y(x=0) Type
a” 0. 0. O. 0.12370 0.325 —0.318 —0.135 +0.133 0 +40.041 +0.39 A
0.234 —-0.215
a’ 0. 0. 0. 0.12370 +0.338 —0.321 —0.153 -+0.150 0 0.103 +0.39 A
+0.243 —0.194
b’ 0. 0 0.018 0.1223765 0.333 0.044 —-0.315 0.007 -0.135 +0.139 +0.19 B
0.252 0.398 —0.202 0.393 —0.39
c’ 0.367 0. O. 0.04280 —0.351 +0.367 —0.351 4-0.343 +0.21 C
+0.343 —0.314 —0.314 +40.367 =+0.15
a 0. 0. 0. 0.12370 0.371 —0.338 —0.206 0.211 0 +0.211 =+0.38 A
0.241 0.152
b 0 0. 0.026 0.12093 0.359 —0.320 —0.174 0.180 +0.097 +40.133 +0.38 A
0.280 0.176
c 0. 0. 0.027 0.12071 0.360 0.071 —0.318 0.027 -0.173 0.178 +0.22 B
0.281 0.415 —-0.178 —0.402 -0.39
d 0 0. 0.070 0.10198 0.292 0.284 —0.206 —0.195 —0.010 0.007 +0.02 B
0.404 0.410 —0.279 —0.287
e 0. 0 0.102 0.06997 0.363 0.081 —0.315 0.017 —0.160 0.175 +0.21 B
0.282 0.418 —0.018 —0.398 —-0.39
f 0. 0 0.103 0.068491 0.364 —0.321 —0.176 0.180 0.085 0.146 +0.39 A
0.275 0.175
g 0. 0 0.12369 0.00089 0.391 —0.391 —-0.375 0.332 —0.242 0.332 +0.26 A
0.0036 0.0022
h 0.390 0. O. 0.009445 —0.388 +0.390 —0.388 +40.390 =+0.04 C
+0.317 —0.245 —0.245 +40.334 +0.26
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When xo moves towards the curve of zero velocity, or
inwards towards the limiting value separating the A-
and C-type orbits the inner boundary becomes smaller
and tends to disappear. The transition is the orbit
generated by a slight perturbation of the unstable
periodic orbit y=Y=0 (Fig. 6).

The general characteristics of the orbits represented
in Fig. 5 are given in Table II. The values given in this
table were found after the orbits were drawn, with the
help of the numerical values of the coordinates and
the velocities printed by the computer (these values are
available by the author for any further use, as well as
the Fortran program for the calculation of the orbits).

Table IT gives the value of e, the initial conditions of
the orbit (the energy is always approximately 0.00765),
the coordinates x, y of the angular points Cy, Cs, Cs, Cs,
on the curve of zero velocity, with an accuracy 40.001
(in the case of A-type orbits C; and C, are symmetric
with Cs, C1), the values of Zmin and &max for y=0, the
values of x when y=0, and when X=0 (perpendicular
branches), the intersection of the boundary with the y
axis, and the type of the orbit.

A comparison of these values with the theoretical
solutions, to different orders of approximation, has been
made. If only zero- or first-order approximation is used
the deviations are large for e=0.1 and even for e=0.05.

For example, the formulas (70) and (71) give the
following values for x1 and s, to be compared with the
values of Table IT:

X1 Yo

a,a’;a’: 0 +0.319(Cy,Cs)

b: +0.082 +0.309(C1,Co)

¢ +0.085(Cs,Ca) +0.308(C1,C)

d: +0.221(C,,Cy) +0.230(Cy,Cs)

e: +0.323 (C1,Cs) 0 (CZ,C4)

f: :|:0326(C1,Cz)

g: #+0.391 (Cl,Cz)

b’: +0.057(C,Cy) +0.314(Cy,Cs)

If we solve the Eqgs. (8) and (44) in first order we find
=%+ (eyi2/3A),

where x4 is the corresponding zero-order solution.

The values of x» for the cases a, a’, a’’ are now
(0.336, —0.302), (0.328, —0.311), (0.323, —0.316). The
last values compare rather satisfactorily with the
empirical values (0.325, —0.318).

A second-order approximation was also calculated
in some cases. The results are then closer to the empirical
ones, but not accurate enough. For example, in case e
the point C; in zero, first and second approximation is
at x=0.323, 0.339, and 0.354, while the empirical value
is 0.363. The difference is due to the fact that only after
the inclusion of terms up to €!¢s one can expect a fair
agreement between theoretical and experimental results,
and even then the numerical solution of the equations

gives better results than the use of series expansions,
as we have seen in Sec. IITA. Zero- and first-order
results are useful only for very small ¢ (e.g., e=0.02).
For this reason although first-order and, eventually,
second-order formulas have been developed to give the
characteristic points of the boundaries, they have not
been included, in general, in this paper.

For practical purposes it is sufficient to solve the
equations numerically, by means of a computer.

A numerical solution of the equations to fourth-order
approximation gives for Ci, Cs in case a: ¥=0.374,
—0.342, and in case b: x=0.366, —0.322, in fair agree-
ment with the values of Table I. This, together with
the fact that the empirical invariant curves are very
near to the fourth-order theoretical invarjant curves
proves that the third integral can describe quanti-
tatively, and not only qualitatively, the main charac-
teristics of the calculated orbits.

V. CONCLUSIONS

The case 4= B is the most characteristic resonance
case, when the two unperturbed frequencies along the
axes x and y are equal. As the potential (1) is the most
simple nonseparable potential, it provides a good
occasion to study the resonance phenomena in detail.

It is known that in the other resonance cases (except
if A3/B*=2) the forms of the orbits are in general
boxes similar to those of the nonresonance cases
(paper I). In the present case, however, we do not have
any box type orbits at all. The A-type orbits have
essential differences from the box-type orbits (angular
points of the boundaries on the x axis, inner boundaries,
different invariant curves).

It is remarkable, therefore, that even in this case the
third integral is applicable with success. Although the
use of only a few terms of the third integral did not give
satisfactory numerical results in the case e=0.1
(because this value is near the escape case e=0.118,
when the curves of zero velocity open and the moving
point may escape to infinity), the inclusion of some
higher-order terms gave a good agreement between
theory and numerical experiments.

A complete discussion of more general potentials
must include both a theoretical discussion of the form
of the third integral and a comparison with numerical
experiments. The following remarks should be made in
this connection.

(a) As a first step numerical experiments are needed
to indicate the possible existence of an isolating or
nearly isolating third integral.

(b) The third integral can be usually developed
in the form of a series. This series may be rather
different from that of the nonresonance cases. The
constancy of this integral should be checked for some
orbits. In this way one will find how many terms of the
third integral are needed to secure a sufficient accuracy.
It is remarkable that an increase of the number_ of
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terms has given always better results in all the cases
we have considered, although one might expect the
contrary, on the assumption that the third integral is
not convergent but only an asymptotic expansion. It
should be useful, however, to extend such calculations
to cases where the dissolution of the invariant curves
indicates that the third integral is not isolating, but
only quasi-isolating.

(c) The first terms of the third integral can be used
to find the form of the invariant curves for all the
initial conditions inside the curve of zero velocity.
This gives an immediate classification of the totality of
the orbits. Otherwise, just calculating many orbits is a
very slow process as regards their classification.

(d) If the theoretical invariant curves deviate from
the computed ones, further terms of the third integral
should be taken into account.

(e) The general forms of the orbits and their bound-
aries can also be found by means of the third integral
and be compared to the actually calculated orbits. A
more careful analysis will give finally the periodic
orbits and the transition orbits.

(f) Onme further step would be the discussion of the
third integral and of the forms of the orbits for in-
creasing values of the perturbation, until the integral
ceases to be isolating (or very nearly isolating). This
has been done experimentally in the case of the potential
(1) by Barbanis (1965). A comparison of such an
analysis with an application of the third integral, when
higher-order terms are included, may indicate why
and how the third integral becomes quasi-isolating, and
eventually, ergodic.

(g) Although a different form of the third integral
may be used near each periodic orbit, it is remarkable
that, in our case at least, the same formula is applic-
able for all kinds of orbits, up the the limiting curve
(Ax2+X2=2h). As Barbanis (1965) has found, the
dissolution of the invariant curves begins not near the
limiting curve, but near the unstable periodic orbit
which is perpendicular to the x axis. The C-type orbits
are very nearly isolating, even when the curves of zero
velocity become open and all the other orbits escape
to infinity. This result may be compared to our result
that the third integral is much better conserved in the
case of the C-type orbits.

The conclusion is that the third integral is not local,
in the sense that it is valid only near the origin, but
represents the totality of the orbits.

VI. APPLICATIONS

A. Formula (1) may represent roughly the potential
field on the plane of symmetry of a galaxy that has
been deformed by interaction with another galaxy,
so that it does not have an axis of symmetry. Of course,
in practice the potential will contain many more terms,
and, eventually, will not have an axis of symmetry
on the plane xy, or even a plane of symmetry. However,

it is useful to look at the potential (1) from the point
of view of a distorted galaxy. Then a comparison with
an axially symmetric galaxy gives the following results:

(a) If a point is ejected from the center, or a point
near the center, in the case of circular symmetry it
would be a straight line or a very elongated ellipse. In
the present case it is a B-type orbit, filling a long strip,
or an A-type orbit, which later may be near an open
ellipse or a circle.

(b) If the initial velocity is perpendicular to the axis
the orbit is nearly circular or elliptical (C-type orbit)
only if the initial point is far away from the center.
Most orbits, however, are of type A, i.e., if the moving
point is rotating initially clockwise, after a long time
its orbit will become almost rectilinear through the
center and then it will reverse its direction of rotation.

By a convenient choice of the units of length and time
we may fit the calculations of this paper to a model of a
nearly spherical homogeneous galaxy, which has, at a
distance of 10 kpc from the center, a circular velocity
250 km/sec.

In the unperturbed case (e=0) we have circular
velocity Vo at a point xo, (yo=Xo=0) such that
Ax=Y@?=0.00765, hence x,=0.2766, ¥=0.08746. If
we set 2o=10 kpc=0.2766L and Y,=250 km/sec
=0.08746LT", where L, T are the units of length and
time, we find

L=36.15 kpc, T=1.40X107 yr.

If €=0.05, ie., if the maximum perturbation is
~209,, we need ~500-800 time units (7-11X10° yr)
to change from an almost circular to an approximately
rectilinear orbit, and ~1000-1500 time units (14-21
X10° yr) to reach an almost circular motion in the
opposite direction.

These times are long in comparison with the ages of
the galaxies; they are small, however, in comparison
with the relaxation times.

The limit between A- and C-type orbits occurs at
about x¢>0.3, i.e., x¢=>211 kpc. Therefore the initially
circular orbits are A type, ie., they do not remain
almost circular except for a small time. Orbits with the
same energy for xo>11 kpc are C-type orbits. i.e., they
are roughly elliptical orbits with a rotation of the
apsides. The most distant point that can be reached by
an orbit with this energy is =14 kpc (rectilinear orbit).

If we assume circular orbits near the center of the
galaxy, with x¢~3 kpc and ¥¢>~200 km/sec, we find
L~11kpcand 7~0.48X107 yr, i.e., the times necessary
to transform an almost circular orbit into a rectilinear
or a circular one in the reverse direction are 2-4X10°
yr and 5-8X10° yr, respectively.

Therefore in the case of moderately distorted galaxies
the times necessary to change appreciably the character
of the circular orbits are of the order of the age of the
galaxies or larger for the outer parts and smaller for
the inner parts of the galaxies.
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Similar results have been found recently for spiral
galaxies by Barbanis. Such calculations are necessary
in order to find the long-range behavior of the orbits
of stars in a galaxy.

B. A second application of the above calculations
is in the problem of the energy exchange between two
coupled oscillators (see, e.g., Ford and Waters 1963).
One may use the quantities ®yp=2%(42?+X?) and
b99=21(4y*+V?) to represent the energy in two direc-
tions. In the nonresonance cases these quantities are
approximately conserved, if the perturbation e is
small. This is because ®;=®y+ePyy4--- and &,
=Pgo} ePart+ - -+ are integrals of motion. The same
happens also in the general rational case (paper I),
because we have in zero-order ®y9+®q=~= const, and

©= Po==C1 (2‘1’10)2+ C2 (2‘1) 10) (2@20) —+c;3 (2(1)20)22c0nst,

therefore approximately ®;¢>const, ®s>const.

In the present case, however, ¢, has also the term Cy,
therefore a separation of 19 and &y is not possible. In
fact, in the calculated orbits an appreciable exchange
of energy between the two degrees of freedom x and y
was observed.

We have taken a number of points on the orbits given
in Fig. 5 and we calculated the mean values and the dis-
persions of the quantities 2®19, 2890 and 24— 2P 19— 24
in units 10~*:

21 y2 2/i—2®10— 240
a’ 1818 58£19 0% 1
a’ 2320 5520 ~ 1+ 6
b’ 21220 5619 —1x 5
% 60 4 17+ 4 — 3% 2
a 32:£20 49-+21 — 5+10
b 2420 5819 — 610
c 2421 5819 —~ 610
d 29 6 58£13 —1020
e 1917 6418 — 610
f 19418 6319 — 610
g 7111 6=:10 0+ 3
h 57+ 8 19+ 7 + 1+ 3

It is seen that only in the cases d, h, and ¢/, i.e., near
the stable periodic orbits the dispersions are compara-
tively small.

The third integral can give immediately the amount
of energy exchange. The invariant curves (Figs. 1, 2,
and 3) give the variation of the quantity 2&;, at the
points y=0. If R and r are the maximum and minimum
distances of the invariant curve from the origin, then
2310 max(y=0)=R? and 2®19 min(y=0)=7%

We will find these values in zero order. For a type A
orbit the maximum 2®;, occurs at the X axis; it is the
solution of equation

6(0,X2)=0, (116)
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[cf. Eq. (31)] The minimum (2&;) occurs at the
A'x axis; it is the solution of the Eq. (33). For example
if =0 (xo=190=X,=0), the invariant curve intersects
the X axis for X2=4%/3. Therefore 219 max(y=0)=4k/3
and 2®3p min(y=0)=0. In the other A cases 2%y max
is a little larger, but 2®1¢ min is also larger. This means
that we do not have complete exchange of energy
between the directions x and y. In the case of a type B
orbit the maximum and minimum 2®;, for y=0 are
the two solutions of the Eq. (116). In a type C orbit
they are the two solutions of Eq. (33). When an orbit
is near a stable periodic orbit the exchange of energy
between the two degrees of freedom is small. For
example, in the case of the orbits Py, P, it is zero. The
same is the case along the orbit P; P, because then
Ay-V?= (2/7)(X2+-Ax¥)=4h/9.

A more detailed analysis can give the energy transfer
when e is not very small and y70 also. Thus the third
integral can explain quantitatively the transfer of
energy between two coupled oscillators. The appreciable
exchange of energy observed in coupled systems under
resonance conditions does not indicate the nonexistence
of the third integral, but only that the third integral
is not given by a formula ®;=} (42?+ X?)+ higher-order
terms.

[We would like to indicate a few typographical errors
in paper I:

On p. 766 col. 2, lines 2 and 4 from below ® should be
replaced by ¢; the same on p. 767 col. 1, lines 1 and 16;
and in col. 2, lines 10 and 15 the first &, should be
replaced by ¢o. On p. 768, col. 1, line 13 add a bar in S,.
On p. 769, col. 2, line 13 from below: P=1.6 (not
P=0.4). In Eq. (47) 2¢/Q should be replaced by z¢/2,
and in Eq. (67) the quantity (4Q0£+430Qz2—1¢?), after
£, should be squared.]
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